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Abstract—A wave function expansion method has been used to solve the problem of reflection
of time-harmonic plane strain waves normally incident upon the free edge of a semi-infinite, lamin-
ated orthotropic plate of linearly elastic materials. Both symmetric and antisymmeric incident
waves have been considered. The exact dispersion relation of the laminated infinite plate is solved
numerically by using Muller’s method, with initial guesses obtained through an approximate tech-
nique. Propagator matrices are employed to obtain wave functions. [t is illustrated that the least-
squares method yields anomalous results. Numerical results using the variational method are pre-
sented for a single-layered graphite/epoxy (transversely isotropic) plate and for a 35-layer cross-
ply (90°/0°/.../90°/0°/90°/. . ./0°/90"). laminated composite graphite/epoxy plate. In each case, the
division of encrgy among various reflected modes is determined. The end resonance for the single
layer graphite/cpoxy plate is also reported.

I. INTRODUCTION

Wave scattering due to inhomogeneitics in plates has been a subject of rescarch interest for
the past few years. A comprehensive knowledge of wave scattering plays an important role
in identifying planar cracks in plates. One approach to solve the wave scattering problem
is to represent the scattered ficld by wave function expansion, as reported by Abduljabbar
et al. (1983) for horizontally polarized shear wave diffraction by normal edge cracks in an
isotropic plate. The free edge of a plate can be considered as a through-thickness crack
which is a special case of an inhomogencity. The study of wave reflection at the free edge
of a laminated composite plate will help in devising suitable techniques to analyse the more
complicated problem of wave scattering duc to cracks in composite plates. The present study
of reflection of plane strain waves at the free edge of a laminated composite plate has been
motivated by these reasons.

In order to represent the reflected wave field by the wave function (eigenfunction)
expansion, displacement and stress cigenfunctions at the frequency runge of interest have
to be established. Computation of the eigenfunctions is straightforward if, for a given
frequency, the cigenvalues (wavenumbers) of the dispersion relation (Rayleigh-Lamb
equation) are determined,

Using elasticity equations, the dispersion relation for a homogencous isotropic plate
has been exhaustively studied by Mindlin (1960). Wave propagation in two- or threc-layer
{sandwich) isotropic plates has been investigated by Yu (1960). Jones (1964) and Lee and
Chang (1979). The frequency spectrum for monoclinic crystal plates has been investigated
by Kaul and Mindlin (1962). Baylis and Green (1986a, b) and Baylis (1988) investigated
analytical dispersion equations for two- or three-layer transversely isotropic plates. Kapania
and Raciti (1989) have given a comprehensive list of references on dispersion relations of
layered plates. To our knowledge, no suitable method for solving the exact dispersion
relation for laminated anisotropic plates, when an arbitrary number of layers are laminated,
has been reported.

As the number of layers increases, the extreme complexities involved in obtaining the
exact dispersion equation have placed restrictions on obtaining accurate eigenvalues and
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eigenvectors. Even if the dispersion relation is obtained, the highly transcendental nature
of it requires robust search techniques in locating roots in the complex plane. This searching
is computationally very expensive. To circumvent this difficulty, a combined analytical-
approximate method is proposed in this paper. The exact dispersion relation of the layered
plate is constructed using the propagator matrix or the layer matrix (see Mal, 1988). Each
layer may have orthotropic material properties. Muller’s method as given in Conte and
Boor (1972) is then used in conjunction with starting initial guesses obtained from an
approximate theory. Once the roots are found, the wave functions can be computed through
the propagator matrix of each sub-layer.

Several approximate theories have been proposed to derive the dispersion relations in
the form of algebraic generalized eigenproblems. The most common ones are plate theories.
A list of references on numerous refined theories for homogeneous or laminated media
consisting of isotropic or anisotropic materials, can be found in Kapania and Raciti (1989)
and Librescu and Reddy (1989). However, plate theories are cumbersome to use and they
do not provide accurate eigenvalues which are required for the edge reflection problems.
Theories which yield accurate eigenvalues and are computationally very convenient to use
are the theories derived through the stiffness method of analysis. Recently, Datta et al.
(1988) presented an approximate stiffness method applicable to a layered anisotropic plate
with an arbitrary number of layers, where each layer may have anisotropic properties.
In this method, each layer is divided into several sub-layers. Using cubic interpolation
polynomials, the continuity of displacements and tractions at the interfaces between sub-
layers was achieved. This method gives very accurate results even at high frequencies.
However, this mcthod leads to a more computationally demanding algebraic eigenvalue
problem than if only lincar interpolation polynomials are employed with only displacement
continuity at the interfaces. In the latter case, the high accuracy is lost that is obtained using
the former. A compromisc between the two methods is a method proposed by Dong and
his co-rescarchers (Dong and Pauley, 1978 ; Dong and Huang, 1985), which will be denoted
as Dong’s method, where quadratic interpolation polynomials were used. In the present
study, eigenvalues obtained from Dong's method were substituted as initial guesses in
Muller's algorithm.

Torvik (1967) treated the free end reflection of a homogeneous isotropic plate by
expanding the reflected wave field in wave functions. He determined the amplitudes of
modes, approximatcly, by using a variational principle. Wu and Plunkett (1967) also
addressed this problem by using a variational principle method and a residual boundary
value minimization method. Gregory and Gladwell (1983) have reported a detailed investi-
gation of symmetric Rayleigh-Lamb wave reflection at the edge of a homogeneous isotropic
plate by using the method of projection. However, to our knowledge, free end reflection of
anisotropic plates has not been reported.

In this paper, the free end reflection that occurs when a train of waves travelling in the
negative x-direction (see Fig. 1) and having only one of the possible wave lengths strikes
the edge x = 0, is investigated. The reflected ficld consists of a finite number of propagating
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Fig. 1. Geometry of the layered plate.
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modes and an infinite number of nonpropagating modes. A finite number of vectors (values
of wave functions at discrete number of interfaces) are superposed to represent the reflected
field. Amplitudes are determined by satisfying the traction-free edge condition by the least-
squares and variational principle methods.

The accuracy of the methods is demonstrated by comparing the results with existing
results for a homogeneous isotropic plate. It is shown that for a laminated composite plate,
the least-squares method yields anomalous results. Numerical results from the variational
method are presented for a single layered graphite/epoxy plate and for a 35-layer cross-ply
(90°/0°/.../90°/0°/90%/.../0°/90°) laminated graphite/epoxy plate. In each case, the
division of energy among various reflected modes is presented. The end resonance is reported
for the single layer graphite/epoxy plate.

2. FORMULATION

Time-harmonic plane strain wave propagation in a semi-infinite plate, composed of
perfectly bonded layers with possibly distinct mechanical properties and thickness, is con-
sidered. The two faces of the plate - = 0 and : = H, and edge x = 0 are traction free (Fig.
1). For simplicity in analysis, each layer is assumed to be orthotropic. Each layer is divided
into several sub-layers so that the total number of sub-layers through the thickness H is N.
It should be noted that division into sub-layers is not required to obtain the exact dispersion
relation, but is used to compute discrete eigenvectors. A time-harmonic plane strain wave
excited at x = + oo, propagates in the plate in the negative x-direction and is incident upon
the end x = 0.

2.1. Ware functions

Wave functions required for the reflection analysis arc obtained by considering
the plane strain wave propagation in the corresponding infinite plate. Let u(x, z, 1), 0,
w(x, z, 1) denote displacement components in the x, y and z-directions, respectively, and ¢
denote time. Consider the ith sub-layer bounded by z = z, and z = z;, . The stress-strain
relation in this sub-layer is given by

O s C‘ . Cl 3 0 Ecc
0::) = C” C)J 0 E:: R (I)
Oax 0 0 C ss Vex

where a,, and g;, are the stress and strain components respectively, and y,, = 2¢.,. C,; are
the elements of the constitutive matrix for the sub-layer. The strain components are related
to u and w by

Eex SULL E =Woi V=Wt (93]

£

where comma (,) denotes the partial derivative.
In the absence of body forces, within each sub-layer, v and w satisfy the equilibrium
cquations

Crect 0. = pid,

Oocx+0... = pdi, (&)

where p is the density of the ith sub-layer and a dot indicates differentiation with respect
to time. For plane waves propagating in the x-direction, the appropriate forms for u and
w which satisfy eqn (3), are
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u = jk(Q} +5Q3 ) exp [jtkx —wi)],
w = (ar, Q7 +r.Q35)expljtkx—~wn], @

where

Qr =A||COS"|Z+A|zSiﬂ"|:,
Qr =A|2C057|:—A||5inr|:,
QF = A,;,co8r,c4+ Ay sinr,z,

Qi = A;;008r;2— A, sinr,z, &)

a = (k3—ak?—ri)/ori,

b= (k3 —k* —Bri)/ok’, (®)

Cn Ci; sz Cis
=—=; B=—"; k= /-——; d=14+—=. 7
* Css p Css : Css Css o

k is the wave number, @ is the circular frequency, j = ./ — 1 and r| and r, are the roots of
the equation

rak? ki or?

sk k—kiepr] =" ®

Ay, Ay1. Az and A,; are the arbitrary constants for the sub-layer. Stress and displacement
components of the sub-layer can be expressed in terms of these four unknown constants.
Evaluating the stresses and displacements at z = z, and = = z,, |, after some manipulations,
the following relation can be obtained:

Q.. =1[P]Q. 9

where
Q;f = <un W, 0, G:,u')’

The vector quantity Q,, which is unknown yet, is independent of x and it represents the
displacement and stress components at z = z,; superscript T represents the transpose; and
[P] is the propagator matrix for the ith sublayer. The elements of [P,] are given in the
Appendix.

Repeated application of eqn (9) results in

Qui = [P1Q,, 10)

where
(P} =[PN][Pn-1])..... [(P2)[P1]. (tn

It should be noted that repeated application of eqn (9) ensures the continuity of dis-
placements and stresses at the interfaces. The elements of the 4 x 4 matrix [P], are denoted
by P, (m = 1-4, n = 1-4). Invoking the zero traction conditions at interfaces | and (N + 1),
we obtain from eqn (10),



Reflection of waves at the free edge of a plate 953
2 -

= ) 12

[Pu Py w 0 (12)

Hence, the exact dispersion relation for the plate is given by
f(w, k) = P5;Pyy— Py, Pyy = 0. (13)

For a particular value of w, eqn (13) will have a finite number of real roots and an infinite
number of imaginary and complex roots for k. To express the reflected wave field as a
modal sum to satisfy boundary conditions, we superpose all the modes corresponding to
the roots with “small™ positive imaginary parts as done by Gregory and Gladwell (1983).
Let M be the total number of modes to be used in the modal expansion and k,, be the mth
root, Traction-free conditions at interface 1 and eqn (12) give the components of the mth
eigenvector at interface 1, as

Qi = (1, = P3/P5;,0,0). (14)

Then, applying eqn (9) at successive interfaces, the mth mode eigenvector (values of wave
function at discrete interfaces) can be obtained as

Q. =(Qn Qb .. QL. Qs 1y (15)
where
T = Uiy Wy Cozumr Giim?» i =1 tON+1; m=1 toM. (16)

Uy Wome . and 0., arc componcnts of mth eigenvector at the ith interface. The
eigenvector Q,, is normalized by dividing cach element through a factor g, defined as

g= \/ S Ut + w8,)- (17)

iwl

The superscript star (*) refers to the complex conjugate.

If the problem under consideration is symmetric or antisymmetric, it is possible to
model only the half-thickness of the plate in the analysis. In this case, the boundary
conditions at the middle surface of the plate, z = H/2, are:

w=0; o, =0, forsymmetric problems,

u=0; o0.=0, forantisymmetric problems. (18)

Applying these boundary conditions in eqn (10), appropriate dispersion relations and
cigenvectors can be obtained.

2.2. Amplitude cocefficients

Consider the case in which the incident wave is the pth propagating mode, cor-
responding to the wave number &,. After striking the edge x = 0, a reflected wave field will
be generated. The displacement vector corresponding to this wave field, qf, at arbitrary x,
can be approximated by the modal sum of a finite number of modes M in the form

M
Q. = Y B.gq.exp(iknx); x20, (19)

me |
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where
B,, = amplitude of mth reflected mode,

T _ . ,
qln = <ulmv Wims oo U, ”mn evey uq.’V+ )ms W(N+ l)m)' (20)

Equation (19) gives the reflected wave field at the edge x = 0 as

q, = [G]B, (2D

where
[GC]l=[q:.92.---.qul, (22)
BT = <B|‘Bz,....BM>. (23)

By solving eqns (1), (2) and (4), the ¢, components of stresses within the ith sub-
layer can be obtained as

= L2 Cos (e~ ut (= be)o ), 9
i
where
e = (1=8)arl—ak?, 2%
[ =l =38)ri—ak?h, (26)

and ¢, dand A, are defined in the Appendix. Since u,, and 0., for the mth mode arc known
from eqn (15), eqn (24) can be used to compute o,,,, at each interface. It should be noted
that ¢, is discontinuous at the interfaces between layers. The force vector at the edge duc
to the reflected field can now be formed as

R' = —[F]B, ey

where [F] is the force mode shape matrix which represents the nodal force mode shapes at
the interfaces, due to stresses o, and o,.. [F] is a rectangular matrix of size 2(N+1) by M.
In constructing the force vector, the consistent load vector formulation given in Bathe
(1982) has been used. The variation of displacements and stresses within the sub-layer is
assumed to be linear. The explicit form of [F] is given in the Appendix.
The edge force vector due to incident field can be written as

R™ = A'F;, (28)
where A4, is the amplitude of the incident mode and the vector F, is obtained from the pth
column of [F], after replacing each x-direction force component by the negative value of

it.
The traction-free edge condition requires that

R=R'+R" = —[FIB+A"F; =0. (29)

Subjecting the sum of the squares of the residuals of R to a least-squares minimization, the
least-squares solution for complex amplitude coefficients can be obtained as

B = A ([F*]'[F]])~'[F*]'F; . (30)

A variational solution to the problem can be obtained by applying the principle of virtual
displacement as in Wu and Plunkett (1967). This results in
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5¢*"R =0, 31

where § implies variation. It may be noted that the total displacement field, q, at x = 0 is
given by

q=qo+q] (32
and
8q = oq, (33)
where q¥f is the incident field.
Substituting eqns (29) and (33) in eqn (31), and making use of eqn (21). the variational
form of the solution is obtained as
B = A ([G*I'[F]]"'[G*]'F; . (34
We define the normalized amplitude A, by
A, = B, JA}. (35)

Once the amplitudes, B,,. are known, the displacement and stress field anywhere in the
plate can be computed.

2.3. Energy flux
Reflected energy is carried only by the propagating modes. The time-average value of
the energy flux associated with the jth reflected propagating mode through the plate cross-
section, is given by
I, =wlB|Y;: j<N,, (36)
where

J;=Im[F] -q]. (37)

In eqn (36), N, represents the number of propagating modes in the reflected field. Similarly,
the energy flux of the incident wave can be written as

I = ol471 Im[(F;)T - (q,7)*], (38)
where q, is the pth column of [G], after replacing each x-direction displacement components
by the negative value of it.

Let E; be the proportion of incident energy transferred into the jth reflected mode,
then

E =TI (39)

Another useful index is the percentage error in energy balance, ¢, defined by

NP'
€= [l;n_ y 1;]100/@,". (40)

nel

The principle of energy conservation requires that sum E; be unity, namely ¢ should be
zero. This condition is used to assess the accuracy of our analysis.
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3. NUMERICAL RESULTS AND DISCUSSION

In this section. the numerical algorithm employed for the evaluation of the roots of
the dispersion relation (13) and the numerical results of the reflection problem for four
examples are presented.

3.1. Wave number determination

For a fixed value of the frequency w, eqn (13) is a transcendental function of the wave
number, k. As reported by Torvik (1967) and Gregory and Gladwell (1983). the admissible
k for the reflected wave field of the semi-infinite plate are those real roots with positive
group velocity and those non-real roots with Im(k) > 0. These conditions ensure that the
reflected waves produce bounded displucement and stress fields throughout the plate. It is
possible to find the roots of eqn (13) by a brute-force method, or a gradient search method
in a complex wave number plane as described in Press et al. (1988). This approach will be
computationally formidable since the roots are sparsely scattered in the complex k-plane.

Herein, Muller’s method is employed. At the first step, beginning with the highest
frequency of interest, the plate is divided into a sufficiently large number of sub-layers and
the approximate roots arc obtained via Dong's method, using an IMSL (1984) sub-routine
for standard algebraic eigenvalue problems. Those approximate roots lying in the first
quadrant of the complex k-plane, are used as initial guesses in Muller’s method to recover
the exact roots. At the next step, o is decreased by a small amount and eqn (13) is solved,
taking exact roots from the previous step as initial guesses for the current step. The process
is repeated until the frequency range of interest is scanned. As a check, at some intermediate
frequencics, approximate roots from Dong’s method were used as initial guesses in Muller's
method to obtain exict roots. After obtaining the wave numbers &, for the frequency range
of interest, the signs of the real wave numbers were adjusted to have positive group velocitics.
M number of roots &, are ordered us follows : real roots are ordered first in decreasing order
of magnitude. Non-real roots are ordered next in the ascending order of magnitude of their
imaginary parts. Whenever a complex root &, which is not purely imaginary is encountered,
the negative complex conjugate, —A&*, is also included.

3.2. Numerical examples
The following four numerical examples were considered

Example | —a homogencous isotropic plate with Poisson’s ratio, v = 0.25. The incident
wave considered is the first symmetric propagating mode.

Example 2—a homogencous graphite/epoxy (transversely isotropic) plate with fibers
aligned along the x-axis (0°). See Table | for material propertics. The incident
wave is the first symmetric propaguting mode.

Example 3—a 35-layer graphite/epoxy cross-ply laminated plate with 90°/07/.../90 '/0°/90/
...J0 /90 configuration. Material properties are given in Table |. The inci-
dent wave is the first symmetric propagating mode.

Example 4-—same as in example 3, but the incident wave is the first antisymmetric propa-
gating mode.

Since in each of the above examples, the problem is cither symmetric of antisymmetric,
only the halt-thickness of the plate was considered in the analysis. In all four examples, the

Table 1. Elastic properties of 07 and 90 graphite/epoxy
tibers. All stiffnesses arc in units of 10" Nm ~?

lamina Cn Cy3 Ci3 Css

0" lamina 1.6073 0.1392 0.0644 0.0707
90" lamina 0.1392 0.1392 0.0692 0.0350
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real branches of the frequency spectrum were plotted to identify the positive group velocity
zones. Figure 2 shows the frequency spectrum for examples 2-4. The following non-
dimensionalization is used for frequency and wave number throughout this section:

wH

er—— }y 3
2c/ulp

/3
where ¢, = —pE, 4 = shear modulus.

kH,

N

Example 1 —Q =

_ e .
2\/ (Css/ﬁ‘)oﬂ,

The total number of sub-layers N, used to compute the eigenvectors and the number
of modes M used in the modal expansion, plays an important role in the accuracy of our
method. In order to select a suitable value for N, the quantity J;(j = | to N,,) defined in eqn
{37) was computed by increasing the value of N at a few selected lower, intermediate and
higher frequencies in the frequency range of interest, until convergent values were obtained
for J;. In this way, reasonably good values for N through the half-thickness were found to
be 50 in examples 1 and 2, and 70 in examples 3 and 4. Thereafter, the reflection problem
was solved at the selected frequencies by the least-squares method [eqn (30)] and by the
variational method [eqn (34)], by increasing the number of modes. Tables 2 and 3 show
some of the results obtained from two mcthods for percentage error in energy balance ¢,
and the modulus of the amplitude of the first rcflected mode, |4 ). In example | at Q = 4.0,
the reflected ficld consists of four symmetric propagating modes ; in example 2 at Q = 4.0,

kH.
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Fig. 2. Real branches of the frequency spectrum. (a) Homogeneous graphite/epoxy plate. (b) 35-
layer cross-ply (90°/0°/..... /90°/0°/90°/, . . ., /0°/90") graphite/epoxy plate.
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Table 2. Variation of percentage error ¢ in energy balance and amplitude modulus
JA4,| with M number of modes for homogeneous plate

€ 1Al
Example M

Eq. (30 Eq. 34) Eq. (30) Eq. 34)

4 51.354 10.836 0.170 0.245

7 21.508 1.907 0.339 0.426

E te 1 i1 3.192 0.062 0.477 0.493
15 0.982 0.073 0.489 0.494

Q= 40 19 0.325 0.140 0.493 0.494

21 0.209 0.153 0.493 0.494

23 0.155 0.160 0.494 0.494

25 0.127 0.164 0.494 0.494

3 76.231 17.229 0.122 0.590

[ 58.006 7.023 0.253 0.621

Example 2 8 44.888 5915 0.371 0.623

12 9.112 0.654 0.665 0.704

Q=40 15 6.423 0.830 0.680 0.704

20 2.068 0.247 0.696 0.708

25 1.212 0.223 0.702 0.709

29 0.499 0.195 0.705 0.709

Table 3. Variation of percentage error ¢ in ¢nergy balance and amplitude |4} with
AM number of modes for 35-fayer graphite/epoxy plate
e 1A
Example M

Eq. (30) Eq. 34) Eq. (30) Eq. 34)

3 91.947 28.291 0.188 0.735

6 91.946 19.259 0.162 0.772

10 92,265 19.892 0.109 0.807

Example 3 12 84.150 16.481 0.102 0.741
15 70368 4.019 0.270 0.796

Q=51 18 54948 1.669 0.436 0.807
21 53912 0.296 0.440 0812

24 54.996 0.172 0.441 0.811

27 51.559 0.005 0476 0.809

30 51.519 ~0.001 0.477 0.809

3 89.365 13.817 0.083 0.674

6 75.730 11.045 0.242 0.776

Example 4 10 74.344 9.437 0.330 0.786
12 63.389 6.579 0,469 0.803

Q=40 15 59.559 4778 0.511 0.814
17 23.118 1.466 0.7176 0.827

21 20.463 0.487 0.791 0.831

24 20471 0.388 0.792 0.831

27 20.474 0.362 0.792 0.831

the reflected field consists of three symmetric propagating modes ; in example 3 at Q = 5.1,
the reflected field consists of three symmetric propagating modes; and in example 4 at
€ = 4.0, the reflected field consists of three antisymmetric propagating modes. Comparison
of the results from the two methods shows that the variational method gives very good
energy balance and convergence of the amplitude | 4,1, even with a relatively smaller number
of modes. It can be noticed that for the homogeneous plate, there is no noticeable difference
in the results from the two methods if a sufficiently large number of modes are taken. For
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the laminated plate, the results obtained by the least-squares method are alarming. Even
with 30 modes participation, only 50% of the incident mode energy is reflected back into
the plate from the free edge for symmetric incidence. which is an anomaly. The reason for
this anomaly is obvious. Unlike the variational method which minimizes the energy, the
least-squares method does not have a physical basis. In the least-squares method, even
though the sum of the squares of the residuals in R is minimized. the minimized residual
sum could be large resulting in large errors in ¢. In what follows. only the results obtained
from the variational method are presented.

Figure 3 shows the comparison of proportion of energy E, obtained by the present
method with those of Gregory and Gladwell (1983) for an isotropic plate. The modal
expansion consisted of 21 modes. For the range of Q in Fig. 3, J¢| < 0.18%: it is seen that
the comparison is excellent. Even though the results for amplitude [4,| are not presented
here due to space limitations, our results were in complete agreement with those of Gregory
and Gladwell (1983). A full discussion on the energy distribution among reflected modes
for this case can be found in Gregory and Gladwell (1983).

The energy distribution among various reflected propagating modes in example 2 is
shown in Fig. 4. The modal expansion consisted of 20 modes. For the range 0 < Q < 2.196
(which is not shown in Fig. 4). |¢] was less than 0.05%. For the range of results presented
here, |¢| < 0.88%. The range 2.197 < Q < 2.2041 is the backward-wave transmission region
discussed by Meitzler (1965). where the third propagating mode has a negative phase
velocity. In particular, it was observed that at the first cut-off Q = 2.2041, only the second
mode carries energy ; at the second cut-off Q = 3.142, only the first mode carries energy ;
at the third cut-off Q = 6.283, all three modes carry energy and in the range 2.4 < Q < 5.9,
the first and third modes share almost the entire reflected encergy. In Fig. 5(a). the variation
of amplitude | 4,] with Qis shown. [t can be scen that [4,] = 1.0inthe range 0 < Q < 2.197.
Since only one propagating mode exists in this frequency range, the entire energy is reflected
into the first mode, and therefore, by the energy conservation principle, 1.4,] has to be equal
to unity. For Q > 2,197, |A4] is oscillatory. After a carcful search, it was noted that edge
resonance occurs in the sccond mode near Q = 2.1520. The variation of amplitude |4,
near resonant frequency is shown in Fig. 5(b). At Q = 2.1520, by increasing M from 20 to
30, & changed from 0.14% to 0.01% and only a 0.11% increase in | A,| was observed.

The division of energy between various reflected modes for examples 3 and 4 is
presented in Figs 6 and 7 respectively. Figures 8(a) and 8(b) show amplitude |A4,], for
examples 3 and 4 respectively. The first three cut-off frequencies are Q = 2.204, 2.556 and
5.111 for symmetric modes, and Q = 1.278, 3.834 and 4.408 for antisymmetric modes. The
symmetric case consisted of 22 modes whilst in the antisymmetric case, 21 modes were used.
In the frequency ranges considered, |¢] < 0.44% for the symmetric case and |g| < 0.18%
for the antisymmetric case. In particular, it is seen from Figs 6(b) and 7 that between the
second and third cut-off frequencies, in the symmetric case, energy is shared almost entirely
between the first and third modes, whereas in the antisymmetric case, energy is shared
among all three modes. A careful scarch was made for the end resonance frequency in the
symmetric case but none could be found and therefore, no search was made for the
antisymmetric case.

4. CONCLUSION

A semi-analytical method employing exact discrete eigenvectors for displacements and
stresses has been used to study the guided plane strain wave reflection at the free edge of a
laminated composite plate. Problems were solved by the least-squares method and the
variational method. It was found that the variational method gave very good results. [t was
shown that the results agree well with known solutions for homogeneous isotropic plates.
Since the exact eigenvectors were employed, the method was accurate at both low fre-
quencies and high frequencies. Since the least-squares method gave anomalous results from
the point of view of energy balance, it is concluded that the method should not be used for
the free end reflection problem of layered plates. Although the case of wave propagation
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along a principle direction has been studied, the method is casily applicable to off-axis

propagation.
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APPENDIX

The clements of the propagator matrix [P)] appearing in egn (9) are given below

P)= ; (Al)

Pu = %’—‘jk[dcos (r k) —chcos (rih)],
]
Cys . .
P = K—[«r.adsm (r k) +rycsin (roh)],
1]
Py = i-;?cd[cos (rih) —cos (r;h)).
1
Cis. . .
Pa = erk[—r,d(l +d)sin(r h) +ryc(l +b)sin ()},
Cis s . .
Pz = Kjk [=r:(1 +b}sin (r ) + br (1 +a) sin (r h)].
C;g.
P = K:Jkr.r:[a(l +b)cos (rh) = (1 +a)cos(rih)].
Ci,. . .
P = —E:—jk[cr:(l +b)sin(r,h) —dr (1 +a) sin (r,h)),

Pz = S.A'—;'k’r,r:(l +a)(l +b){ ~cos (r k) +cos(r,h)),

)
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bkl
Py = -A—{COS (rih) —cos (r:h)]
'

P “;i[r,ab sin {r by —rysin{r h)].
1
Css.
Py = A—)k[-bccos (r.h) +dcos (r h)].
i
CS& 2 . .
Par = A—k'[—r,b(l +a)sin (r k) +r,(L+8) sin (r 0],
]
jk ) .
Pa= Z-'[—r: sin (r &) +abr sin {r,h)],
Pa = gr.r:[«cos (r k) +-cos{r i)l
CSS : N
P = —A—‘{—rzcsm (rih) +radsin (ry].
Cu N
Pas = Ijkr,r;[-—(l +a)cos (r iy +a(l +b) cos (r )], (A2)

¢ = (1 ~0)k*—pria,
d = (1—-6)kb—fri,
o
A, = C,gkﬁri(—gab— |)-
L]

A; = Cyyjhryrilab - 1),
h=z, —5=h, (A3)

The explicit form of the [F] matrix introduced in eqn (27) is as follows:

[Fl=[F,.Fo....Fp....Fy]: (Ad)
where
EL o= (Fl B LN AP TN Aty 8 (A3)
1 .
'lm = ”6"(20-‘1-»"‘“';‘3!»')'
[}
Fin = 3 20,01+ 0,030,
Fe h!*‘ (X3 £~ h' (¥} {1 ;
- = T(ﬂ'xv<o—|m+2"«\m)+ “6‘(25“““'“«(:nm) for2€ig N,

h. /
Fin = 2 O i+ 20 m) + 2 (2o + i) FOr 2KH €N,

b

'v
Flvenm = zv(a(::.:tm'*‘z”uwonn).

) h
Fivttim = 5 @:vm+ 2wt im). (A6)

In eqn (A6), o'!), and a!;), (2 < i € N) denote the mth mode normal stresses in the x-direction, just above and
below the ith interface, respectively. If the adjacent sub-layers of the ith interfuce have the same material propertics,

a't) will be equal to a'7),.



